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We successfully synthesized monodisperse chromium nano-

particles from the thermolysis of a Fischer carbene complex.

The development of uniform nanometer-sized particles has been a

major research focus because of their many technological and

fundamental properties.1 Various nanoparticles of transition

metals and their oxides have been synthesized, and their magnetic

and catalytic properties characterized. In the synthesis of transition

metal nanoparticles, the thermolysis of metal carbonyl com-

pounds, such as Co2(CO)8,
2 Fe(CO)5,

3 and W(CO)6,
4 have been

frequently used. Recently, tailored organometallic precursors were

used to synthesize high-quality nanoparticles. For example, the

Chaudret group demonstrated the shape-controlled synthesis of

ZnO5 and Co6 nanoparticles via an organometallic chemical

approach.

Although chromium and chromium oxide nanoparticles are

expected to exhibit interesting magnetic7 and catalytic8 properties,

there have been very few reports9 on the synthesis of monodisperse

chromium and chromium oxide nanoparticles. Consequently, we

attempted to synthesize chromium nanoparticles from the thermal

decomposition of Cr(CO)6 in the presence of various surfactants.

However, we were not able to synthesize Cr nanoparticles because

Cr(CO)6 is thermally stable up to 300 uC and readily sublimes at

temperatures .100 uC. Therefore, a chromium–carbene complex

was employed as a precursor for the synthesis because it is a

thermally labile zero-valent organo-chromium compound.10

In the past, the chemistry of the Fischer carbene complexes has

been extensively pursued by organic and organometallic chem-

ists.11 Intensive research interest has been focused on identifying

novel organic thermal reactions of Fischer carbene complexes,

including radical dimerization,12 carbene transfer reactions13 and

cyclization.11 These unique thermal reactions result from the

unique activity of the de-ligated carbene mode at high tempera-

tures. In addition, the thermal decomposition behaviour of metal

carbene complexes has been a very interesting research topic.13 In

contrast to the previous reports that focused on the organic part of

the carbene complexes, this study examined the metal fragment. It

was reasoned that the metal fragments could make a good metal

source for the synthesis of chromium nanoparticles if a Cr–carbene

complex was thermally decomposed in the presence of a suitable

surfactant (Scheme 1). This report demonstrates the successful

use of a chromium Fischer carbene complex as a precursor for the

size-controlled synthesis of Cr nanoparticles. It was found that

trioctylphosphine (TOP) is the best surfactant in the current

synthesis of Cr nanoparticles.

The following describes the typical synthesis of 2.5 nm sized Cr

nanoparticles. 0.1 g of chromium Fischer carbene complex, which

was synthesized using a method reported elsewhere,11 was

dissolved in 3 mL of TOP. The carbene solution was injected

into a 3 mL TOP solution at 300 uC under an argon atmosphere.

After the injection, the reaction temperature was reduced to 250 uC.

The reaction temperature was slowly increased to 300 uC and the

resulting solution was aged at this temperature for 1.5 h. During

this process, the colour of the reaction mixture turned black. The

reaction mixture was cooled to room temperature and then poured

into 30 mL of ethanol, resulting in precipitation. A powder form of

the nanoparticles was retrieved by centrifugation, which was
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Scheme 1 Proposed mechanism.

Fig. 1 TEM images of Cr nanoparticles with particles sizes of (a) 2.5 nm,

(b) 4.5 nm and (c) 6.0 nm. XRD patterns of 4.5 nm Cr nanoparticles

(d) freshly synthesized, and (e) after annealing at 500 uC under argon.
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redispersed in chloroform. The TEM image shows monodisperse

2.5 nm sized nanoparticles (Fig. 1(a)). The X-ray diffraction

(XRD) pattern (Fig. 1(d)) and high-resolution TEM image (see

ESI{) shows that the nanoparticles are poorly crystalline. In order

to characterize clearly the crystal structure of the nanoparticles, the

sample were annealed at 500 uC under an argon atmosphere. The

XRD pattern after the annealing clearly showed two peaks at 2h

44 and 64u, which correspond to (110) and (200) reflections of

cubic Cr structure (JCPDS #06-0694, Im3m space group. The FT-

IR spectrum of the synthesized nanoparticles showed a C–P

vibration peak at 1460 cm21, demonstrating that the nanoparticles

were stabilized by TOP. The thermal behaviour of chromium

Fischer carbene complexes in TOP solvent was investigated in

order to obtain some insight in the nanoparticle formation

mechanism. The chromium Fischer carbene complex was readily

transformed to compound 1, which was characterized by 1H, 13C,
31P NMR, IR spectroscopy and elemental analysis.14

It was reasoned that one carbonyl ligand of the chromium

Fischer carbene was easily substituted by TOP. This can be

contributed to the unique activity of Fischer carbene complexes.15

It is noteworthy that Cr(CO)6 showed no reactivity to TOP at

300 uC.

Next, an attempt was made to control the size of the chromium

nanoparticles. It is well known that the use of two surfactants with

a different binding ability is a useful method for controlling the

size of nanoparticles.16 This study screened different types of

surfactants and found that dioctyl ether (DOE) is a good

surfactant since it was observed to reduce the decomposition rate

of the carbene complex. When 0.1 g of the carbene precursor

dissolved in 1 mL of dioctyl ether and 4 mL of TOP were injected

into 4 mL TOP at 300 uC, 4.5 nm sized Cr nanoparticles were

produced (Fig. 1(b) and Table 1). When 0.1 g of the precursor

dissolved in 3 mL of dioctyl ether and 2 mL of TOP were injected

in 4 mL of TOP at 300 uC, we obtained 6.0 nm sized nanoparticles

(Fig. 1(c)). When .3 mL dioctyl ether was employed, nano-

particles were not produced.

The synthesized Cr nanoparticles were highly sensitive to air.17

They were easily oxidized to form Cr2O3 when exposed to air. It is

well known that pure chromium metal is easily oxidized to Cr2O3,

which is known to be the most thermodynamically stable form of

chromium oxide. Our attempts to prepare the other controlled

chromium oxide species such as CrO2 are in progress.

In conclusion, we demonstrated the successful use of a

chromium Fischer carbene complex as a precursor for the

synthesis of monodisperse chromium nanoparticles. Because the

carbenes are usually very reactive and do not change the oxidation

state of coordinated metals, we expect that these carbene

complexes would make good precursors for the synthesis of

nanoparticles that cannot be readily prepared using conventional

precursors.
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